Factors Affecting the High-Intensity Cooling Distance of Urban Green Spaces: A Case Study of Xi’an, China

Author:

Sun Mingjun1,Zhao Xinyi1,Wang Yun1,Ren Zeqi1ORCID,Fu Xin1ORCID

Affiliation:

1. College of Landscape Architecture & Arts, Northwest A&F University, Xianyang 712100, China

Abstract

Urban green space has a cooling effect and its cooling effect can extend to the surrounding environment, conspicuously decreasing with distance. Land surface temperature (LST) and cooling distance are generally researched based on remote sensing and temperature inversion algorithms; this distance is affected by internal and external environment factors, but the high-intensity cooling distance (HCD) is overlooked by using large scale datasets. In addition, the comprehensive relationship between internal and external factors with cooling distance and HCD is still unclear. The aim of this study is to identify the HCD of green spaces by monitoring the changes of LST away from it and to quantify the influences of 12 internal and external factors on HCD. A multiple linear regression model is used to analyze the relationship between them. In the summer of 2022, we measured and calculated HCD for 59 urban green spaces in Xi’an, China. The analysis results show that the HCD is not only affected by the internal landscape factors of green spaces, but also closely related to factors associated with the natural environmental, urban attributes, and surrounding structures. These findings can rationally assist the planning of the allocation of urban green spaces and provide a scientific basis for mitigating the urban heat island effect.

Funder

Northwest A&F University, China

Shaanxi Science and Technology Agency, China

Innovation and Entrepreneurship Training Plan for Chinese College Students

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3