The relationship between spatial configuration of urban parks and neighbourhood cooling in a humid subtropical city

Author:

Verma Ravi,Zawadzka Joanna Ewa,Garg Pradeep Kumar,Corstanje Ron

Abstract

Abstract Context Urban parks are essential for maintaining aesthetics within cities and keeping their its energy balance by helping mitigate the Urban Heat Island (UHI) effect through controlling ambient and land surface temperature (LST). Objectives To investigate the impact of cooling in terms of distance by variously configured urban parks of a humid subtropical city, using landscape metrics and open-source data. Methods Land use (LU) was obtained through maximum likelihood classification of 3 m resolution aerial RGB-NIR imagery supported by ground control points and park boundaries collected during field survey. LST at matching resolution was obtained through downscaling of Landsat-8 LST at 30/100m resolution, calculated with the Radiative Transfer Equation (RTE). Landscape metrics for patches of parks were calculated using landscapemetrics R library and related to neighbourhood distances over built-up land use (LU). Results Urban parks with homogenous cores and less complex shape provide distinctly higher cooling of neighbouring built-up LU of circa 2.55 °C over the distance of 18 m from park boundaries. Four metrics: contiguity index (CONTIG), core area index (CAI), fractal dimension index (FRAC) and perimeter-area ratio (PARA) represent significant relationship between spatial configuration of parks and their cooling distance. No cooling capacity of parks regardless of their shape and core was observed beyond the distance of 18 m, which remained constant with small fluctuations in the range of 0.5 °C up to the distance of 600 m. Conclusions The study concludes that cooling distance of urban parks in their neighbourhood extends up to 18 m, which is shorter than suggested by other studies.

Funder

Commonwealth Split Site Scholarship

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3