Higher Education during the Pandemic: The Predictive Factors of Learning Effectiveness in COVID-19 Online Learning

Author:

Tsang Jenny,So MikeORCID,Chong Andy,Lam Benson,Chu AmandaORCID

Abstract

The global coronavirus disease (COVID-19) outbreak forced a shift from face-to-face education to online learning in higher education settings around the world. From the outset, COVID-19 online learning (CoOL) has differed from conventional online learning due to the limited time that students, instructors, and institutions had to adapt to the online learning platform. Such a rapid transition of learning modes may have affected learning effectiveness, which is yet to be investigated. Thus, identifying the predictive factors of learning effectiveness is crucial for the improvement of CoOL. In this study, we assess the significance of university support, student–student dialogue, instructor–student dialogue, and course design for learning effectiveness, measured by perceived learning outcomes, student initiative, and satisfaction. A total of 409 university students completed our survey. Our findings indicated that student–student dialogue and course design were predictive factors of perceived learning outcomes whereas instructor–student dialogue was a determinant of student initiative. University support had no significant relationship with either perceived learning outcomes or student initiative. In terms of learning effectiveness, both perceived learning outcomes and student initiative determined student satisfaction. The results identified that student–student dialogue, course design, and instructor–student dialogue were the key predictive factors of CoOL learning effectiveness, which may determine the ultimate success of CoOL.

Funder

The Hong Kong University of Science and Technology

Publisher

MDPI AG

Subject

Public Administration,Developmental and Educational Psychology,Education,Computer Science Applications,Computer Science (miscellaneous),Physical Therapy, Sports Therapy and Rehabilitation

Reference62 articles.

1. Teaching and Learning during the COVID-19 Pandemic: A Topic Modeling Study

2. Tracking Public Health and Social Measures a Global Datasethttps://www.who.int/emergencies/diseases/novel-coronavirus-2019/phsm

3. WHO Director-General’s opening remarks at the media briefing on COVID-19https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020

4. Learning, Student Digital Capabilities and Academic Performance over the COVID-19 Pandemic

5. Distance Education and the Evolution of Online Learning in the United States;Kentnor;Curriculum and Teaching Dialogue.,2015

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3