Maintaining Academic Integrity in Programming: Locality-Sensitive Hashing and Recommendations

Author:

Karnalim OscarORCID

Abstract

Not many efficient similarity detectors are employed in practice to maintain academic integrity. Perhaps it is because they lack intuitive reports for investigation, they only have a command line interface, and/or they are not publicly accessible. This paper presents SSTRANGE, an efficient similarity detector with locality-sensitive hashing (MinHash and Super-Bit). The tool features intuitive reports for investigation and a graphical user interface. Further, it is accessible on GitHub. SSTRANGE was evaluated on the SOCO dataset under two performance metrics: f-score and processing time. The evaluation shows that both MinHash and Super-Bit are more efficient than their predecessors (Cosine and Jaccard with 60% less processing time) and a common similarity measurement (running Karp-Rabin greedy string tiling with 99% less processing time). Further, the effectiveness trade-off is still reasonable (no more than 24%). Higher effectiveness can be obtained by tuning the number of clusters and stages. To encourage the use of automated similarity detectors, we provide ten recommendations for instructors interested in employing such detectors for the first time. These include consideration of assessment design, irregular patterns of similarity, multiple similarity measurements, and effectiveness–efficiency trade-off. The recommendations are based on our 2.5-year experience employing similarity detectors (SSTRANGE’s predecessors) in 13 course offerings with various assessment designs.

Publisher

MDPI AG

Subject

Public Administration,Developmental and Educational Psychology,Education,Computer Science Applications,Computer Science (miscellaneous),Physical Therapy, Sports Therapy and Rehabilitation

Reference59 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sensitive Similarity on Programming Assessments Expecting Highly Similar Submissions;2024 IEEE World Engineering Education Conference (EDUNINE);2024-03-10

2. Inappropriate Benefits and Identification of ChatGPT Misuse in Programming Tests: A Controlled Experiment;Lecture Notes in Networks and Systems;2024

3. Work-In-Progress: Student Motivation on Gamification in Maintaining Programming Ethics;Lecture Notes in Networks and Systems;2024

4. Plagiarism and AI Assistance Misuse in Web Programming: Unfair Benefits and Characteristics;2023 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE);2023-11-28

5. Identifying Code Plagiarism on C# Assignments;2023 IEEE International Conference on Advanced Learning Technologies (ICALT);2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3