Abstract
The aim of this work is the improvement of the electrochemical behavior of industrial steel using [CoN/AlN]n multilayered system via reactive Pulsed Laser Deposition (PLD) technique with a Nd: YAG laser (λ = 1064 nm) on Silicon (100) and AISI 302 steel substrates. In this work was varied systematically the bilayer period (Λ) and the coatings were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and the chemical composition was determined by means of X-ray photoelectron spectroscopy (XPS). The maximum corrosion resistance for the coating with (Λ) equal to 34.7 nm, corresponding to n = 30 bilayered. The polarization resistance and corrosion rate were around 7.62 × 105 kOhm × cm2 and 7.25 × 10−5 mm/year, these values were 6.3 × 105 and 78.6 times better than those showed by the uncoated 302 stainless steel substrate (1.2 kOhm × cm2 and 0.0057 mm/year), respectively. The improvement of the electrochemical behavior of the steel 302 coated with this [CoN/AlN]n can be attributed to the presence of several interfaces that act as obstacles for the inward and outward diffusions of Cl− ions, generating an increment in the corrosion resistance. The electrochemical results found in the [CoN/AlN]n open a possibility of future applications in mechanical devices that require high demands in service conditions.
Subject
General Materials Science,Metals and Alloys
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献