Abstract
A phase-field model was developed to simulate the ferromagnetic domain structure and martensite variant microstructure of Ni-Mn-Ga shape-memory alloy. The evolution of reversible magnetic-field-induced strain (MFIS) and associated magnetic domain/martensite variant structure were modeled under an external magnetic field. It was found that MFIS increased significantly from 0.2% to 0.28% as the temperature increased from 265 K to 285 K. In addition, compressive pre-stress efficiently enhanced the MFIS of the alloy, while tensile stress reduced MFIS. Furthermore, it was proved that there was possibility of achieving similar enhancement of MFIS by replacing compressive stress with perpendicular biaxial tensile stress. The results revealed that the residual variant induced by stress plays an important role in the reversible MFIS effect.
Funder
State Key Lab for Advanced Metals and Materials in University of Science and Technology Beijing
Fundamental Research Funds for the Central Universities
Subject
General Materials Science,Metals and Alloys
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献