A Two-Terminal Fault Location Fusion Model of Transmission Line Based on CNN-Multi-Head-LSTM with an Attention Module

Author:

Su Chao1,Yang Qiang1ORCID,Wu Xiaomei2,Lai Chun Sing3ORCID,Lai Loi Lei2ORCID

Affiliation:

1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

2. Department of Electrical Engineering, School of Automation, Guangdong University of Technology, Guangzhou 510006, China

3. Brunel Interdisciplinary Power Systems Research Centre, Department of Electronic and Electrical Engineering, Brunel University London, London UB8 3PH, UK

Abstract

Most traditional artificial intelligence-based fault location methods are very dependent on fault signal selection and feature extraction, which is often based on prior knowledge. Further, these methods are usually very sensitive to line parameters and selected fault characteristics, so the generalization performance is poor and cannot be applied to different lines. In order to solve the above problems, this paper proposes a two-terminal fault location fusion model, which combines a convolutional neural network (CNN), an attention module (AM), and multi-head long short-term memory (multi-head-LSTM). First, the CNN is used to accomplish the self-extraction of fault data features. Second, the CBAM (convolutional block attention module) model is embedded into the convolutional neural network to selectively learn fault features autonomously. Furthermore, the LSTM is combined to learn the deep timing characteristics. Finally, a MLP output layer is used to determine the optimal weights to construct a fusion model based on the results of the two-terminal relative fault location model and then output the final location result. Simulation studies show that this method has a high location accuracy, does not require the design of complex feature extraction algorithms, and exhibits good generalization performance for lines with different parameters, which is of great importance for the development of AI-based methods of fault location.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3