Neutral-Point Voltage Regulation and Control Strategy for Hybrid Grounding System Combining Power Module and Low Resistance in 10 kV Distribution Network

Author:

Zhou Yu1,Liu Kangli2ORCID,Ding Wanglong2,Wang Zitong2,Yao Yuchen2,Wang Tinghuang1,Zhou Yuhan1

Affiliation:

1. Shenzhen Power Supply Co., Ltd., China Southern Power Grid, Shenzhen 518000, China

2. School of Electrical Engineering, Southeast University, Nanjing 210096, China

Abstract

A single-phase grounding fault often occurs in 10 kV distribution networks, seriously affecting the safety of equipment and personnel. With the popularization of urban cables, the low-resistance grounding system gradually replaced arc suppression coils in some large cities. Compared to arc suppression coils, the low-resistance grounding system features simplicity and reliability. However, when a high-resistance grounding fault occurs, a lower amount of fault characteristics cannot trigger the zero-sequence protection action, so this type of fault will exist for a long time, which poses a threat to the power grid. To address this kind of problem, in this paper, a hybrid grounding system combining the low-resistance protection device and fully controlled power module is proposed. During a low-resistance grounding fault, the fault isolation is achieved through the zero-sequence current protection with the low-resistance grounding system itself, while, during a high-resistance grounding fault, the reliable arc extinction is achieved by regulating the neutral-point voltage with a fully controlled power module. Firstly, this paper introduces the principles, topology, and coordination control of the hybrid grounding system for active voltage arc extinction. Subsequently, a dual-loop-based control method is proposed to suppress the fault phase voltage. Furthermore, a faulty feeder selection method based on the Kepler optimization algorithm and convolutional neural network is proposed for the timely removal of permanent faults. Lastly, the simulation and HIL-based emulated results verify the rationality and effectiveness of the proposed method.

Funder

Science and Technology Project of Shenzhen Power Supply Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3