Abstract
A method to obtain a radiation exchange factor FR in the bundle of steel round bars is presented. This parameter is required for determination of the radiative thermal conductivity krd, which is one of the basic thermal properties of the bar bundles. In the presented approach, the analyzed parameter is calculated indirectly. The initial point for calculations is the geometric model of the medium defined as a unit cell. Then, for the elements present in this cell, the thermal resistance of both conduction and radiation is determined. The radiation resistance is calculated from the radiosity balance of the surfaces enclosing the analyzed system. On this basis, the radiation thermal conductivity krd is calculated. Next, taking into account the bar diameter, the value of parameter FR is also determined. The analysis is performed at the process temperature range of 200 to 800 °C for three bar diameters: 10, 20 and 30 mm, and for the three porosities of the bundle. Different emissivity of bars in the range of 0.5 to 0.9 was also taken into account. Finally, a relationship that allows calculating the FR factor correlated with the emissivity of the bars and the bundle porosity was established. The krd obtained from the methodology presented and compared with the values calculated directly do not exceed 9%; however, after averaging over the entire temperature range of the process, the difference does not exceed 0.2%.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献