Abstract
This work introduces an automatic classification system for measuring the complexity level of a given Italian text under a linguistic point-of-view. The task of measuring the complexity of a text is cast to a supervised classification problem by exploiting a dataset of texts purposely produced by linguistic experts for second language teaching and assessment purposes. The commonly adopted Common European Framework of Reference for Languages (CEFR) levels were used as target classification classes, texts were elaborated by considering a large set of numeric linguistic features, and an experimental comparison among ten widely used machine learning models was conducted. The results show that the proposed approach is able to obtain a good prediction accuracy, while a further analysis was conducted in order to identify the categories of features that influenced the predictions.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献