Topic Modeling for Text Structure Assessment: The case of Russian Academic Texts

Author:

Solovyev ValeryORCID,Solnyshkina MarinaORCID,Tutubalina ElenaORCID

Abstract

Background: Automatic assessment of text complexity levels is viewed as an important task, primarily in education. The existing methods of computing text complexity employ simple surface text properties neglecting complexity of text content and structure. The current paradigm of complexity studies can no longer keep up with the challenges of automatic evaluation of text structure. Purpose: The aim of the paper is twofold: (1) it introduces a new notion, i.e. complexity of a text topical structure which we define as a quantifiable measure and combination of four parameters, i.e. number of topics,  topic coherence, topic distribution, and topic weight. We hypothesize that these parameters are dependent variables of text complexity and aligned with the grade level; (2) the paper is also aimed at justifying applicability of the recently developed methods of topic modeling to measuring complexity of a text topical structure. Method: To test this hypothesis, we use Russian Academic Corpus comprising school textbooks, texts of Russian as a foreign language and fiction texts recommended for reading in different grades, and employ it in three versions: (i) Full Texts Corpus, (ii) Corpus of Segments, (iii) Corpus of Paragraphs. The software tools we implement include LDA (Latent Dirichlet Allocation), OnlineLDA and Additive Regularization Of Topic Models with Word2vec-based metric and Normalized Pairwise Mutual Information. Results: Our findings include the following: the optimal number of topics in educational texts varies around 20; topic coherence and topic distribution are identified to be functions of grade level complexity; text complexity is suggested to be estimated with structural organization parameters and viewed as a new algorithm complementing the classical approach of text complexity assessment based on linguistic features. Conclusion: The results reported and discussed in the article strongly suggest that the theoretical framework and the analytic algorithms used in the study might be fruitfully applied in education and provide a basis for assessing complexity of academic texts.

Publisher

National Research University, Higher School of Economics (HSE)

Subject

Linguistics and Language,Language and Linguistics,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3