Dissolved Oxygen Forecasting in Aquaculture: A Hybrid Model Approach

Author:

Eze EliasORCID,Ajmal Tahmina

Abstract

Dissolved oxygen (DO) concentration is a vital parameter that indicates water quality. We present here DO short term forecasting using time series analysis on data collected from an aquaculture pond. This can provide the basis of data support for an early warning system, for an improved management of the aquaculture farm. The conventional forecasting approaches are commonly characterized by low accuracy and poor generalization problems. In this article, we present a novel hybrid DO concentration forecasting method with ensemble empirical mode decomposition (EEMD)-based LSTM (long short-term memory) neural network (NN). With this method, first, the sensor data integrity is improved through linear interpolation and moving average filtering methods of data preprocessing. Next, the EEMD algorithm is applied to decompose the original sensor data into multiple intrinsic mode functions (IMFs). Finally, the feature selection is used to carefully select IMFs that strongly correlate with the original sensor data, and integrate into both inputs for the NN. The hybrid EEMD-based LSTM forecasting model is then constructed. The performance of this proposed model in training and validation sets was compared with the observed real sensor data. To obtain the exact evaluation accuracy of the forecasted results of the hybrid EEMD-based LSTM forecasting model, four statistical performance indices were adopted: mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and mean absolute percentage error (MAPE). Results are presented for the short term (12-h) and the long term (1-month) that are encouraging, indicating suitability of this technique for forecasting DO values.

Funder

Innovate UK

Biotechnology and Biological Sciences Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3