Longitudinal dissolved oxygen patterns in Atlantic salmon aquaculture sites in British Columbia, Canada

Author:

Jeong Jaewoon,Awosile Babafela,Thakur Krishna K.,Stryhn Henrik,Boyce Brad,Vanderstichel Raphael

Abstract

Dissolved oxygen (DO), an important water-quality parameter required to support aquatic life, is a critical factor for determining the general biological health of the aquatic ecosystem, and the concentration of DO is a critical factor in determining salmon growth and welfare. This study used longitudinal DO concentration, recorded hourly from 21 aquaculture sites, each with loggers in three separate cages, in four areas in British Columbia, Canada, between 2015 and 2017. The measurements were evaluated based on the recommended DO concentrations for protection of salmonids from hypoxia. Using a two-stage time-series analysis, we described variations in DO concentrations measured over the study period and their associations with environmental factors. Based on the water quality criteria for DO concentration, 42.3, 56.5, and 1.2% of the hourly DO data from the overall 21 aquaculture sites were classified as ‘optimal’, ‘sub-optimal’, and ‘stressed’, respectively. The frequency of hypoxic episodes differed substantially among seasons, aquaculture sites and even among cages within sites. The effects of environmental variables on DO concentration had markedly different patterns depending on the season. Significant associations with DO concentrations were observed for temperatures in the summer and winter months, and both wind direction and remotely-sensed estimated absorption from phytoplankton [aph(443)] in the winter months. The time-series regression model results showed overall (year-round) associations of temperature, wind speed, and aph(443) with DO concentrations. Describing DO measurements at these aquaculture sites provided an understanding of how much they deviated from the recommended DO concentrations, as well as provide baseline information for future water resource planning, including continued and improved water quality monitoring in aquaculture areas.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3