Abstract
The study proposed a robotic calibration algorithm for improving the robot manipulator position precision. At first, the kinematic parameters as well as the compliance parameters of the robot can be identified together to improve its accuracy using the joint deflection model and the conventional kinematic model calibration technique. Then, an artificial neural network is constructed for further compensating the unmodeled errors. The invasive weed optimization is used to determine the parameters of the neural network. To show the advantages of the suggested technique, an HH800 robot is employed for the experimental study of the proposed algorithm. The improved position precision of the robot after the experiment firmly proves the practicability and positional precision of the proposed method over the other algorithms in comparison.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献