AS1411 Aptamer Linked to DNA Nanostructures Diverts Its Traffic Inside Cancer Cells and Improves Its Therapeutic Efficacy

Author:

Vindigni Giulia,Raniolo SofiaORCID,Iacovelli FedericoORCID,Unida Valeria,Stolfi CarmineORCID,Desideri AlessandroORCID,Biocca SilviaORCID

Abstract

The nucleolin-binding G-quadruplex AS1411 aptamer has been widely used for cancer therapy and diagnosis and linked to nanoparticles for its selective targeting activity. We applied a computational and experimental integrated approach to study the effect of engineering AS1411 aptamer on an octahedral truncated DNA nanocage to obtain a nanostructure able to combine selective cancer-targeting and anti-tumor activity. The nanocages functionalized with one aptamer molecule (Apt-NC) displayed high stability in serum, were rapidly and selectively internalized in cancer cells through an AS1411-dependent mechanism, and showed over 200-fold increase in anti-cancer activity when compared with the free aptamer. Comparison of Apt-NCs and free AS1411 intracellular distribution showed that they traffic differently inside cells: Apt-NCs distributed through the endo-lysosomal pathway and were never found in the nuclei, while the free AS1411 was mostly found in the perinuclear region and in nucleoli. Molecular dynamics simulations indicated that the aptamer, when linked to the nanocage, sampled a limited conformational space, more confined than in the free state, which is characterized by a large number of metastable conformations. A different intracellular trafficking of Apt-NCs compared with free aptamer and the confined aptamer conformations induced by the nanocage were likely correlated with the high cytotoxic enhancement, suggesting a structure–function relationship for the AS1411 aptamer activity.

Funder

Ministry of Education, Universities and Research

LazioInnova

University of Rome Tor Vergata

Italian Association for Cancer Research

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3