Use of an In Vitro Skin Parallel Artificial Membrane Assay (Skin-PAMPA) as a Screening Tool to Compare Transdermal Permeability of Model Compound 4-Phenylethyl-Resorcinol Dissolved in Different Solvents

Author:

Sinkó Bálint,Bárdos Vivien,Vesztergombi Dániel,Kádár Szabina,Malcsiner Petra,Moustie Anne,Jouy Chantal,Takács-Novák Krisztina,Grégoire Sebastien

Abstract

Absorption through the skin of topically applied chemicals is relevant for both formulation development and safety assessment, especially in the early stages of development. However, the supply of human skin is limited, and the traditional in vitro methods are of low throughput. As an alternative, an artificial membrane-based Skin Parallel Artificial Membrane Permeability Assay (Skin-PAMPA) has been developed to mimic the permeability through the stratum corneum. In this study, this assay was used to measure the permeability of a model compound, 4-phenylethyl-resorcinol (PER), dissolved in 13 different solvents that are commonly used in cosmetic formulation development. The study was performed at concentrations close to the saturated solution of PER in each solvent to investigate the maximum thermodynamic potential of the solvents. The permeability of PER in selected solvents was also measured on ex vivo pig skin for comparison. Pig ear skin is an accepted alternative model of human skin. The permeability coefficient, which is independent of the concentration of the applied solution, showed a good correlation (R2 = 0.844) between the Skin-PAMPA and the pig skin permeation data. Our results support the use of the Skin-PAMPA to screen the suitability of different solvents for non-polar compounds at an early stage of formulation development.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference29 articles.

1. Methods for Assessing Percutaneous Absorption

2. Transdermal drug delivery

3. Transdermal drug delivery: 30 + years of war and still fighting!

4. Scientific Committee on Consumer Safety Basic criteria for the in vitro assessment of dermal absorption of cosmetic ingredients;Eur. Comm.,2010

5. OECD Test No. 428: Skin Absorption: In Vitro Method,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3