Comparative Study on Inhibition of Pancreatic Cancer Cells by Resveratrol Gold Nanoparticles and a Resveratrol Nanoemulsion Prepared from Grape Skin

Author:

Inbaraj Baskaran StephenORCID,Hua Leng-Huei,Chen Bing-HueiORCID

Abstract

Resveratrol, a phenolic compound possessing vital biological activities such as anti-cancer, is present abundantly in grape skin, a waste produced during the processing of grape juice. The objectives of this study were to prepare resveratrol-gold nanoparticles and a resveratrol nanoemulsion from grape skin and study their inhibition effects on pancreatic cancer cells BxPC-3. The spherical-shaped citrate gold nanoparticles (GNPs) and resveratrol-gold nanoparticles (R-GNPs) were, respectively, prepared with a surface plasmon resonance peak at 528 and 538 nm, mean particle size of 20.8 and 11.9 nm, and zeta-potential at −32.7 and −66.7 mV, by controlling an appropriate concentration of citrate/resveratrol and gold chloride as well as stirring time and temperature. The resveratrol nanoemulsion, composed of soybean oil, Tween 80, and sucrose fatty acid ester in glycerol and water, possessed a high storage stability with a mean particle size of 14.1 nm, zeta-potential of −49.7 mV, and encapsulation efficiency of 95.5%. An antiproliferation study revealed that both R-GNPs and resveratrol nanoemulsion could effectively inhibit the growth of pancreatic cancer cells BxPC-3, with the latter showing a higher inhibition effect. Western blot analysis implied that both can down-regulate expressions of cyclin A, cyclin B, CDK1, and CDK2 and up-regulate expressions of p53 and p21, accompanied by enhancing cytochrome C expression, decreasing BcL-2 expression, increasing Bax expression, and leading to the elevation of caspase-8, caspase-9, and caspase-3 activities for cell apoptosis execution. Future research is needed to study the inhibition of pancreatic tumors in vivo by R-GNPs and resveratrol nanoemulsions.

Funder

Ministry of Science and Technology Taiwan

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3