Thinking Quantitatively of RNA-Based Information Transfer via Extracellular Vesicles: Lessons to Learn for the Design of RNA-Loaded EVs

Author:

Piffoux MaxORCID,Volatron Jeanne,Silva Amanda,Gazeau Florence

Abstract

Extracellular vesicles (EVs) are 50–1000 nm vesicles secreted by virtually any cell type in the body. They are expected to transfer information from one cell or tissue to another in a short- or long-distance way. RNA-based transfer of information via EVs at long distances is an interesting well-worn hypothesis which is ~15 years old. We review from a quantitative point of view the different facets of this hypothesis, ranging from natural RNA loading in EVs, EV pharmacokinetic modeling, EV targeting, endosomal escape and RNA delivery efficiency. Despite the unique intracellular delivery properties endowed by EVs, we show that the transfer of RNA naturally present in EVs might be limited in a physiological context and discuss the lessons we can learn from this example to design efficient RNA-loaded engineered EVs for biotherapies. We also discuss other potential EV mediated information transfer mechanisms, among which are ligand–receptor mechanisms.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3