Integration of Transcriptomics and Metabolomics to Reveal the Molecular Mechanisms Underlying Rhodium Nanoparticles-Based Photodynamic Cancer Therapy

Author:

Machuca AndresORCID,Garcia-Calvo EstefaniaORCID,Anunciação Daniela S.,Luque-Garcia Jose L.

Abstract

Rhodium nanoparticles have recently been described as promising photosensitizers due to their low toxicity in the absence of near-infrared irradiation, but their high cytotoxicity when irradiated. Irradiation is usually carried out with a laser source, which allows the treatment to be localized in a specific area, thus avoiding undesirable side effects on healthy tissues. In this study, a multi-omics approach based on the combination of microarray-based transcriptomics and mass spectrometry-based untargeted and targeted metabolomics has provided a global picture of the molecular mechanisms underlying the anti-tumoral effect of rhodium nanoparticle-based photodynamic therapy. The results have shown the ability of these nanoparticles to promote apoptosis by suppressing or promoting anti- and pro-apoptotic factors, respectively, and by affecting the energy machinery of tumor cells, mainly blocking the β-oxidation, which is reflected in the accumulation of free fatty acids and in the decrease in ATP, ADP and NAD+ levels.

Funder

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3