Abstract
Background
Foliage color is considered an important ornamental character of Cymbidium tortisepalum (C. tortisepalum), which significantly improves its horticultural and economic value. However, little is understood on the formation mechanism underlying foliage-color variations.
Methods
In this study, we applied a multi-omics approach based on transcriptomics and metabolomics, to investigate the biomolecule mechanisms of metabolites changes in C. tortisepalum colour mutation cultivars.
Results
A total of 508 genes were identified as differentially expressed genes (DEGs) between wild and foliage colour mutation C. tortisepalum cultivars based on transcriptomic data. KEGG enrichment of DEGs showed that genes involved in phenylalanine metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis and brassinosteroid biosynthesis were most significantly enriched. A total of 420 metabolites were identified in C. tortisepalum using UPLC-MS/MS-based approach and 115 metabolites differentially produced by the mutation cultivars were identified. KEGG enrichment indicated that the most metabolites differentially produced by the mutation cultivars were involved in glycerophospholipid metabolism, tryptophan metabolism, isoflavonoid biosynthesis, flavone and flavonol biosynthesis. Integrated analysis of the metabolomic and transcriptomic data showed that there were four significant enrichment pathways between the two cultivars, including phenylalanine metabolism, phenylpropanoid biosynthesis, flavone and flavonol biosynthesis and flavonoid biosynthesis.
Conclusion
The results of this study revealed the mechanism of metabolites changes in C. tortisepalum foliage colour mutation cultivars, which provides a new reference for breeders to improve the foliage color of C. tortisepalum.
Funder
key breeding projects of Sichuan Province
special fund for modern agricultural industrial technology system
Technological Innovation R&D projects of Chengdu
independent innovation project of Sichuan Academy of Agricultural Science
Publisher
Public Library of Science (PLoS)