Brain Distribution and Metabolism of Flupirtine, a Nonopioid Analgesic Drug with Antiseizure Effects, in Neonatal Rats

Author:

Patil Madhoosudan,Matter Brock,Raol Yogendra,Bourne David,Kelley Ryan,Kompella Uday

Abstract

Flupirtine, a nonopioid analgesic drug, is effective in treating neonatal seizures. However, its brain delivery and pharmacokinetics are unknown in neonatal mammals. The purpose of this study was to determine the pharmacokinetics of flupirtine and the formation of its active metabolite D-13223 in various tissues such as brain in neonate animals. On postnatal day 7, rat pups received 25 mg/kg of flupirtine intraperitoneally. Liver; heart; kidney; lung; spleen; retina; serum; and brain regions hippocampus, cortex, and the remaining brain (devoid of cerebellum) were harvested up to 24-h postdosing. An LC-MS/MS assay was developed to quantify flupirtine and D-13223. Flupirtine was delivered to all tissues assessed, with the highest area under the concentration vs. time curve (AUC0–24h) in liver (488 µg·h/g tissue) and the lowest in spleen (82 µg·h/g tissue). Flupirtine reached the brain, including the hippocampus and cortex, within 1 h of dosing and persisted at 24 h. Flupirtine AUC in various brain regions was approximately 195 µg·h/g tissue. The half-life of flupirtine in various tissues ranged from 3.1 to 5.2 h. D-13223 was formed in vivo and detected in all tissues assessed, with the concentrations being the highest in the liver. Incubation of isolated neonatal rat liver, heart, kidney, lung, spleen, whole eye, serum, or whole brain with flupirtine for 3 h at 37 °C formed D-13223 in all tissues, except serum. D-13223 formation was the highest in isolated liver tissue. Tissue partition coefficients based on isolated tissue uptake correlated well with in vivo tissue:serum drug exposure ratios. Thus, flupirtine reaches the target brain tissues from the systemic route in neonatal rats, and brain tissue forms the active metabolite D-13223.

Funder

National Institutes of Health

Skaggs School of Pharmacy and Pharmaceutical Sciences

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3