Author:
Yan Weidong,Gao Sizhe,Zhang Qiaoni,Qi Jiachen,Liu Gang,Teng Yuan,Wang Jian,Yan Shujie,Ji Bingyang
Abstract
Deep hypothermic circulatory arrest (DHCA) can induce systemic inflammatory response syndrome, including neuroinflammation. Finding suitable compounds is necessary for attenuating neuroinflammation and avoiding cerebral complications following DHCA. In the present study, we established DHCA rat models and monitored the vital signs during the surgical process. After surgery, we found significantly increased proinflammatory cytokines (IL-6, IL-1β, and TNF-α) in DHCA rats. Quantitative proteomics analysis was performed for exploring the differentially expressed proteins in hippocampus of DHCA rats and the data showed the adiponectin receptor 1 protein was upregulated. More importantly, administration of AdipoRon, a small-molecule adiponectin receptor agonist, could improve the basic vital signs and attenuate the increased IL-6, IL-1β, and TNF-α in DHCA rats. Furthermore, AdipoRon inhibits the activation of microglia (M1 state) and promotes their transition to an anti-inflammatory state, via promoting the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), and downregulating nuclear factor kappa B (NF-κB) in DHCA rats. Consistently, we used LPS-treated BV2 cells to mimic the neuroinflammatory condition and found that AdipoRon dose-dependently decreased cytokines, along with increased phosphorylation of AMPK and downregulated NF-κB. In conclusion, our present data supported that AdipoRon inhibited DHCA-induced neuroinflammation via activating the hippocampal AMPK/NF-κB pathway.
Funder
the National Natural Science Foundation of China
the Fundamental Research Funds for the Central Universities
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献