Cerebral mitochondrial dysfunction associated with deep hypothermic circulatory arrest in neonatal swine†

Author:

Mavroudis Constantine D1,Karlsson Michael2,Ko Tiffany3,Hefti Marco4,Gentile Javier I1,Morgan Ryan W2,Plyler Ross2,Mensah-Brown Kobina G3,Boorady Timothy W3,Melchior Richard W5,Rosenthal Tami M5,Shade Brandon C5,Schiavo Kellie L5,Nicolson Susan C2,Spray Thomas L1,Sutton Robert M2,Berg Robert A2,Licht Daniel J3,Gaynor J William1,Kilbaugh Todd J2

Affiliation:

1. Department of Cardiothoracic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA

2. Department of Anesthesia and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA

3. Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA

4. Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA

5. Department of Perfusion Services, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA

Abstract

Abstract OBJECTIVES Controversy remains regarding the use of deep hypothermic circulatory arrest (DHCA) in neonatal cardiac surgery. Alterations in cerebral mitochondrial bioenergetics are thought to contribute to ischaemia–reperfusion injury in DHCA. The purpose of this study was to compare cerebral mitochondrial bioenergetics for DHCA with deep hypothermic continuous perfusion using a neonatal swine model. METHODS Twenty-four piglets (mean weight 3.8 kg) were placed on cardiopulmonary bypass (CPB): 10 underwent 40-min DHCA, following cooling to 18°C, 10 underwent 40 min DHCA and 10 remained at deep hypothermia for 40 min; animals were subsequently rewarmed to normothermia. 4 remained on normothermic CPB throughout. Fresh brain tissue was harvested while on CPB and assessed for mitochondrial respiration and reactive oxygen species generation. Cerebral microdialysis samples were collected throughout the analysis. RESULTS DHCA animals had significantly decreased mitochondrial complex I respiration, maximal oxidative phosphorylation, respiratory control ratio and significantly increased mitochondrial reactive oxygen species (P < 0.05 for all). DHCA animals also had significantly increased cerebral microdialysis indicators of cerebral ischaemia (lactate/pyruvate ratio) and neuronal death (glycerol) during and after rewarming. CONCLUSIONS DHCA is associated with disruption of mitochondrial bioenergetics compared with deep hypothermic continuous perfusion. Preserving mitochondrial health may mitigate brain injury in cardiac surgical patients. Further studies are needed to better understand the mechanisms of neurological injury in neonatal cardiac surgery and correlate mitochondrial dysfunction with neurological outcomes.

Funder

NIH

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine,Pulmonary and Respiratory Medicine,General Medicine,Surgery

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3