Antimicrobial Perspectives of Active SiO2FexOy/ZnO Composites

Author:

Matusoiu Florin,Negrea AdinaORCID,Nemes Nicoleta SorinaORCID,Ianasi CatalinORCID,Ciopec Mihaela,Negrea Petru,Duteanu NarcisORCID,Ianasi Paula,Duda-Seiman Daniel,Muntean DeliaORCID

Abstract

The antibacterial activity of zinc oxide particles has received significant interest worldwide, especially through the implementation of technology to synthesize particles in the nanometer range. This study aimed to determine the antimicrobial efficacy of silica-based iron oxide matrix (SiO2FexOy) synthesized with various amounts of ZnO (SiO2FexOyZnO) against various pathogens. It is observed that, with the addition of ZnO to the system, the average size of the porosity of the material increases, showing increasingly effective antibacterial properties. Zinc-iron-silica oxide matrix composites were synthesized using the sol–gel method. The synthesized materials were investigated physicochemically to highlight their structural properties, through scanning electron microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FT-IR). At the same time, surface area, pore size and total pore volume were determined for materials synthesized using the Brunauer–Emmett–Teller (BET) method. Although the material with 0.0001 g ZnO (600 m2/g) has the highest specific surface area, the best antimicrobial activity was obtained for the material with 1.0 g ZnO, when the average pore volume is the largest (~8 nm) for a specific surface of 306 m2/g. This indicates that the main role in the antibacterial effect has reactive oxygen species (ROS) generated by the ZnO that are located in the pores of the composite materials. The point of zero charge (pHpZc) is a very important parameter for the characterization of materials that indicate the acid-base behaviour. The pHpZc value varies between 4.9 and 6.3 and is influenced by the amount of ZnO with which the iron-silica oxide matrix is doped. From the antimicrobial studies carried out, it was found that for S. aureus the total antibacterial effect was obtained at the amount of 1.0 g ZnO. For Gram-negative bacteria, a total antibacterial effect was observed in S. flexneri (for the material with 0.1 g ZnO), followed by E. coli (for 1.0 g ZnO). For P. aeruginosa, the maximum inhibition rate obtained for the material with 1.0 g ZnO was approximately 49%.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3