Antimicrobial Nano-Zinc Oxide Biocomposites for Wound Healing Applications: A Review

Author:

Pino Paolo1ORCID,Bosco Francesca1ORCID,Mollea Chiara1,Onida Barbara1ORCID

Affiliation:

1. Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy

Abstract

Chronic wounds are a major concern for global health, affecting millions of individuals worldwide. As their occurrence is correlated with age and age-related comorbidities, their incidence in the population is set to increase in the forthcoming years. This burden is further worsened by the rise of antimicrobial resistance (AMR), which causes wound infections that are increasingly hard to treat with current antibiotics. Antimicrobial bionanocomposites are an emerging class of materials that combine the biocompatibility and tissue-mimicking properties of biomacromolecules with the antimicrobial activity of metal or metal oxide nanoparticles. Among these nanostructured agents, zinc oxide (ZnO) is one of the most promising for its microbicidal effects and its anti-inflammatory properties, and as a source of essential zinc ions. This review analyses the most recent developments in the field of nano-ZnO–bionanocomposite (nZnO-BNC) materials—mainly in the form of films, but also hydrogel or electrospun bandages—from the different preparation techniques to their properties and antibacterial and wound-healing performances. The effect of nanostructured ZnO on the mechanical, water and gas barrier, swelling, optical, thermal, water affinity, and drug-release properties are examined and linked to the preparation methods. Antimicrobial assays over a wide range of bacterial strains are extensively surveyed, and wound-healing studies are finally considered to provide a comprehensive assessment framework. While early results are promising, a systematic and standardised testing procedure for the comparison of antibacterial properties is still lacking, partly because of a not-yet fully understood antimicrobial mechanism. This work, therefore, allowed, on one hand, the determination of the best strategies for the design, engineering, and application of n-ZnO-BNC, and, on the other hand, the identification of the current challenges and opportunities for future research.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference234 articles.

1. Prevalence and incidence of chronic wounds and related complications: A protocol for a systematic review;Ni;Syst. Rev.,2016

2. Tottoli, E.M., Dorati, R., Genta, I., Chiesa, E., Pisani, S., and Conti, B. (2020). Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics, 12.

3. Medtech Europe (2022, December 01). The Burden of Wounds on EU Healthcare Systems. Available online: https://www.medtecheurope.org/wp-content/uploads/2015/10/290902009_MTE_The-Burden-of-Wounds-on-EU-Healthcare-Systems_Brochure.pdf.

4. EWMA (2022, December 01). The Impact of Patient Health and Lifestyle Factors on Wound Healing. Available online: https://ewma.org/what-we-do/projects/lifestyle-factors.

5. Food and Drug Administration (FDA) drug approval end points for chronic cutaneous ulcer studies;Eaglstein;Wound Repair Regen.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3