Cyclodextrin Derivatives as Promising Solubilizers to Enhance the Biological Activity of Rosmarinic Acid

Author:

Stasiłowicz-Krzemień AnnaORCID,Rosiak NataliaORCID,Płazińska AnitaORCID,Płaziński WojciechORCID,Miklaszewski AndrzejORCID,Tykarska EwaORCID,Cielecka-Piontek JudytaORCID

Abstract

Rosmarinic acid (RA) is a natural antioxidant with neuroprotective properties; however, its preventive and therapeutic use is limited due to its slight solubility and poor permeability. This study aimed to improve RA physicochemical properties by systems formation with cyclodextrins (CDs): hydroxypropyl-α-CD (HP-α-CD), HP-β-CD, and HP-γ-CD, which were prepared by the solvent evaporation (s.e.) method. The interactions between components were determined by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Fourier Transform infrared spectroscopy (FTIR). The sites of interaction between RA and CDs were suggested as a result of in silico studies focused on assessing the interaction between molecules. The impact of amorphous systems formation on water solubility, dissolution rate, gastrointestinal (GIT) permeability, and biological activity was studied. RA solubility was increased from 5.869 mg/mL to 113.027 mg/mL, 179.840 mg/mL, and 194.354 mg/mL by systems formation with HP-α-CD, HP-β-CD, and HP-γ-CD, respectively. During apparent solubility studies, the systems provided an acceleration of RA dissolution. Poor RA GIT permeability at pH 4.5 and 5.8, determined by parallel artificial membrane permeability assay (PAMPA system), was increased; RA–HP-γ-CD s.e. indicated the greatest improvement (at pH 4.5 from Papp 6.901 × 10−7 cm/s to 1.085 × 10−6 cm/s and at pH 5.8 from 5.019 × 10−7 cm/s to 9.680 × 10−7 cm/s). Antioxidant activity, which was determined by DPPH, ABTS, CUPRAC, and FRAP methods, was ameliorated by systems; the greatest results were obtained for RA–HP-γ-CD s.e. The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) was increased from 36.876% for AChE and 13.68% for BChE to a maximum inhibition of the enzyme (plateau), and enabled reaching IC50 values for both enzymes by all systems. CDs are efficient excipients for improving RA physicochemical and biological properties. HP-γ-CD was the greatest one with potential for future food or dietary supplement applications.

Funder

National Science Center

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3