In Silico Drug Repurposing Framework Predicts Repaglinide, Agomelatine and Protokylol as TRPV1 Modulators with Analgesic Activity

Author:

Andrei CorinaORCID,Mihai Dragos PaulORCID,Zanfirescu AncaORCID,Nitulescu George MihaiORCID,Negres Simona

Abstract

Pain is one of the most common symptoms experienced by patients. The use of current analgesics is limited by low efficacy and important side effects. Transient receptor potential vanilloid-1 (TRPV1) is a non-selective cation channel, activated by capsaicin, heat, low pH or pro-inflammatory agents. Since TRPV1 is a potential target for the development of novel analgesics due to its distribution and function, we aimed to develop an in silico drug repositioning framework to predict potential TRPV1 ligands among approved drugs as candidates for treating various types of pain. Structures of known TRPV1 agonists and antagonists were retrieved from ChEMBL databases and three datasets were established: agonists, antagonists and inactive molecules (pIC50 or pEC50 < 5 M). Structures of candidates for repurposing were retrieved from the DrugBank database. The curated active/inactive datasets were used to build and validate ligand-based predictive models using Bemis–Murcko structural scaffolds, plain ring systems, flexophore similarities and molecular descriptors. Further, molecular docking studies were performed on both active and inactive conformations of the TRPV1 channel to predict the binding affinities of repurposing candidates. Variables obtained from calculated scaffold-based activity scores, molecular descriptors criteria and molecular docking were used to build a multi-class neural network as an integrated machine learning algorithm to predict TRPV1 antagonists and agonists. The proposed predictive model had a higher accuracy for classifying TRPV1 agonists than antagonists, the ROC AUC values being 0.980 for predicting agonists, 0.972 for antagonists and 0.952 for inactive molecules. After screening the approved drugs with the validated algorithm, repaglinide (antidiabetic) and agomelatine (antidepressant) emerged as potential TRPV1 antagonists, and protokylol (bronchodilator) as an agonist. Further studies are required to confirm the predicted activity on TRPV1 and to assess the candidates’ efficacy in alleviating pain.

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference81 articles.

1. Chronic pain as a symptom or a disease: The IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11) Rolf-Detlef;Pain,2018

2. Targeting TRPV1 for pain relief: Limits, losers and laurels;Expert Opin. Investig. Drugs,2012

3. TRPV1-Targeted Drugs in Development for Human Pain Conditions;Drugs,2021

4. Optimizing Pain Control During the Opioid Epidemic;Surg. Clin. N. Am.,2019

5. The silent epidemic of chronic pain in older adults;Prog. Neuro-Psychopharmacol. Biol. Psychiatry,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3