Solubilization of Paclitaxel with Natural Compound Rubusoside toward Improving Oral Bioavailability in a Rodent Model

Author:

Zhang Jian12,Shu Jicheng13,Stout Rhett W.4ORCID,Russo Paul S.5,Liu Zhijun1

Affiliation:

1. School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA

2. School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China

3. Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Ministry of Education, Nanchang 330004, China

4. Department of Pathological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA

5. Department of Materials Science, Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

Paclitaxel, which features low water solubility and permeability, is an efflux pump substrate. The current paclitaxel drugs are given intravenously after resolving the solubility issue. Yet, oral delivery to achieve therapeutic bioavailability is not effective due to low absorption. This study evaluated a natural compound, rubusoside, to improve oral bioavailability in an animal model. Free paclitaxel molecules were processed into nano-micelles formed in water with rubusoside. The particle size of the nano-micelles in water was determined using dynamic light scattering. The oral bioavailability of paclitaxel in nano-micelles was determined against Cremophor/alcohol-solubilized Taxol after oral and intravenous administration to pre-cannulated Sprague Dawley rats. When loaded into the rubusoside-formed nano-micelles, paclitaxel reached a supersaturated concentration of 6 mg/mL, 60,000-fold over its intrinsic saturation of 0.1 µg/mL. The mean particle size was 4.7 ± 0.7 nm in diameter. Compared with Taxol®, maximum blood concentration was increased by 1.5-fold; the time to reach maximum concentration shortened to 0.8 h from 1.7 h; and, relative oral bioavailability increased by 88%. Absolute oral bioavailability was 1.7% and 1.3% for the paclitaxel nano-micelles and Taxol®, respectively. Solubilizing paclitaxel with rubusoside was successful, but oral bioavailability remained low. Further inhibition of the efflux pump and/or first metabolism may allow more oral paclitaxel to enter systemic circulation.

Funder

National Cancer Institute

National Institute of Food and Agriculture

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3