Mitochondria-Targeted Liposomes for Drug Delivery to Tumor Mitochondria

Author:

Ekmekcioglu Aysegul1ORCID,Gok Ozgul2ORCID,Oz-Arslan Devrim3,Erdal Meryem Sedef4ORCID,Yagan Uzuner Yasemin5,Muftuoglu Meltem16ORCID

Affiliation:

1. Institute of Health Sciences, Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey

2. Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey

3. School of Medicine, Department of Biophysics, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey

4. Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Turkey

5. Faculty of Pharmacy, Department of Pharmaceutical Technology, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey

6. Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey

Abstract

The special bilayer structure of mitochondrion is a promising therapeutic target in the diagnosis and treatment of diseases such as cancer and metabolic diseases. Nanocarriers such as liposomes modified with mitochondriotropic moieties can be developed to send therapeutic molecules to mitochondria. In this study, DSPE-PEG-TPP polymer conjugate was synthesized and used to prepare mitochondria-targeted liposomes (TPPLs) to improve the therapeutic index of chemotherapeutic agents functioning in mitochondria and reduce their side effects. Doxorubicin (Dox) loaded-TPPL and non-targeted PEGylated liposomes (PPLs) were prepared and compared based on physicochemical properties, morphology, release profile, cellular uptake, mitochondrial localization, and anticancer effects. All formulations were spherically shaped with appropriate size, dispersity, and zeta potential. The stability of the liposomes was favorable for two months at 4 °C. TPPLs localize to mitochondria, whereas PPLs do not. The empty TPPLs and PPLs were not cytotoxic to HCT116 cells. The release kinetics of Dox-loaded liposomes showed that Dox released from TPPLs was higher at pH 5.6 than at pH 7.4, which indicates a higher accumulation of the released drug in the tumor environment. The half-maximal inhibitory concentration of Dox-loaded TPPLs and PPLs was 1.62-fold and 1.17-fold lower than that of free Dox due to sustained drug release, respectively. The reactive oxygen species level was significantly increased when HCT116 cells were treated with Dox-loaded TPPLs. In conclusion, TPPLs may be promising carriers for targeted drug delivery to tumor mitochondria.

Funder

Scientific and Technological Research Council of Turkey

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3