CSM-Toxin: A Web-Server for Predicting Protein Toxicity

Author:

Morozov Vladimir12ORCID,Rodrigues Carlos H. M.12ORCID,Ascher David B.12ORCID

Affiliation:

1. School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia

2. Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia

Abstract

Biologics are one of the most rapidly expanding classes of therapeutics, but can be associated with a range of toxic properties. In small-molecule drug development, early identification of potential toxicity led to a significant reduction in clinical trial failures, however we currently lack robust qualitative rules or predictive tools for peptide- and protein-based biologics. To address this, we have manually curated the largest set of high-quality experimental data on peptide and protein toxicities, and developed CSM-Toxin, a novel in-silico protein toxicity classifier, which relies solely on the protein primary sequence. Our approach encodes the protein sequence information using a deep learning natural languages model to understand “biological” language, where residues are treated as words and protein sequences as sentences. The CSM-Toxin was able to accurately identify peptides and proteins with potential toxicity, achieving an MCC of up to 0.66 across both cross-validation and multiple non-redundant blind tests, outperforming other methods and highlighting the robust and generalisable performance of our model. We strongly believe the CSM-Toxin will serve as a valuable platform to minimise potential toxicity in the biologic development pipeline. Our method is freely available as an easy-to-use webserver.

Funder

University of Queensland Research Training Tuition Fee Offset

University of Queensland Research Training Stipend

The National Health and Medical Research Council of Australia

The Victorian Government’s Operational Infrastructure Support Program

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3