Polycaprolactone (PCL)-Polylactic Acid (PLA)-Glycerol (Gly) Composites Incorporated with Zinc Oxide Nanoparticles (ZnO-NPs) and Tea Tree Essential Oil (TTEO) for Tissue Engineering Applications

Author:

Grande-Tovar Carlos DavidORCID,Castro Jorge Iván,Valencia Llano Carlos HumbertoORCID,Tenorio Diego López,Saavedra Marcela,Zapata Paula A.ORCID,Chaur Manuel N.ORCID

Abstract

The search for new biocompatible materials that can replace invasive materials in biomedical applications has increased due to the great demand derived from accidents and diseases such as cancer in various tissues. In this sense, four formulations based on polycaprolactone (PCL) and polylactic acid (PLA) incorporated with zinc oxide nanoparticles (ZnO-NPs) and tea tree essential oil (TTEO) were prepared. The sol-gel method was used for zinc oxide nanoparticle synthesis with an average size of 11 ± 2 nm and spherical morphology. On the other hand, Fourier Transformed infrared spectroscopy (FTIR) showed characteristic functional groups for each composite component. The TTEO incorporation in the formulations was related to the increased intensity of the C-O-C band. The thermal properties of the materials show that the degradative properties of the ZnO-NPs decrease the thermal stability. The morphological study by scanning electron microscopy (SEM) showed that the presence of TTEO and ZnO-NPs act synergistically, obtaining smooth surfaces, whereas membranes with the presence of ZnO-NPs or TTEO only show porous morphologies. Histological implantation of the membranes showed biocompatibility and biodegradability after 60 days of implantation. This degradation occurs through the fragmentation of the larger particles with the presence of connective tissue constituted by type III collagen fibers, blood vessels, and inflammatory cells, where the process of resorption of the implanted material continues.

Funder

MinCiencias

Fondecyt Regular

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3