Translation of Monoclonal Antibodies Pharmacokinetics from Animal to Human Using Physiologically Based Modeling in Open Systems Pharmacology (OSP) Suite: A Retrospective Analysis of Bevacizumab

Author:

Pasquiers Blaise12,Benamara Salih2,Felices Mathieu2,Ternant David34ORCID,Declèves Xavier15ORCID,Puszkiel Alicja15ORCID

Affiliation:

1. Inserm UMR-S1144, Faculty of Pharmacy, Université Paris Cité, 75006 Paris, France

2. PhinC Development, 91300 Massy, France

3. Faculty of Medicine, Université de Tours, EA 4245 T2I, 37032 Tours, France

4. Service de Pharmacologie Médicale, CHRU de Tours, 37000 Tours, France

5. Biologie du Médicament—Toxicologie, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, 75014 Paris, France

Abstract

Interspecies translation of monoclonal antibodies (mAbs) pharmacokinetics (PK) in presence of target-mediated drug disposition (TMDD) is particularly challenging. Incorporation of TMDD in physiologically based PK (PBPK) modeling is recent and needs to be consolidated and generalized to provide better prediction of TMDD regarding inter-species translation during preclinical and clinical development steps of mAbs. The objective of this study was to develop a generic PBPK translational approach for mAbs using the open-source software (PK-Sim® and Mobi®). The translation of bevacizumab based on data in non-human primates (NHP), healthy volunteers (HV), and cancer patients was used as a case example for model demonstration purpose. A PBPK model for bevacizumab concentration-time data was developed using data from literature and the Open Systems Pharmacology (OSP) Suite version 10. PK-sim® was used to build the linear part of bevacizumab PK (mainly FcRn-mediated), whereas MoBi® was used to develop the target-mediated part. The model was first developed for NHP and used for a priori PK prediction in HV. Then, the refined model obtained in HV was used for a priori prediction in cancer patients. A priori predictions were within 2-fold prediction error (predicted/observed) for both area under the concentration-time curve (AUC) and maximum concentration (Cmax) and all the predicted concentrations were within 2-fold average fold error (AFE) and average absolute fold error (AAFE). Sensitivity analysis showed that FcRn-mediated distribution and elimination processes must be accounted for at all mAb concentration levels, whereas the lower the mAb concentration, the more significant the target-mediated elimination. This project is the first step to generalize the full PBPK translational approach in Model-Informed Drug Development (MIDD) of mAbs using OSP Suite.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3