Modelling of Nanoparticle Distribution in a Spherical Tumour during and Following Local Injection

Author:

Caddy George,Stebbing Justin,Wakefield Gareth,Xu Xiao YunORCID

Abstract

Radio-sensitizing nanoparticles are a potential method to increase the damage caused to cancerous cells during the course of radiotherapy. The distribution of these particles in a given targeted tumour is a relevant factor in determining the efficacy of nanoparticle-enhanced treatment. In this study, a three-part mathematical model is shown to predict the distribution of nanoparticles after direct injection into a tumour. In contrast with previous studies, here, a higher value of diffusivity for charged particles was used and the concentration profile of deposited particles was studied. Simulation results for particle concentrations both in the interstitial fluid and deposited onto cells are compared for different values of particle surface charges during and after injection. Our results show that particles with a negative surface charge can spread farther from the injection location as compared to uncharged particles with charged particles occupying 100% of the tumour volume compared to 8.8% for uncharged particles. This has implications for the future development of radiosensitizers and any associated trials.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3