Abstract
Model-informed precision dosing is being increasingly used to improve therapeutic drug monitoring. To meet this need, several tools have been developed, but open-source software remains uncommon. Posologyr is a free and open-source R package developed to enable Bayesian individual parameter estimation and dose individualization. Before using it for clinical practice, performance validation is mandatory. The estimation functions implemented in posologyr were benchmarked against reference software products on a wide variety of models and pharmacokinetic profiles: 35 population pharmacokinetic models, with 4.000 simulated subjects by model. Maximum A Posteriori (MAP) estimates were compared to NONMEM post hoc estimates, and full posterior distributions were compared to Monolix conditional distribution estimates. The performance of MAP estimation was excellent in 98.7% of the cases. Considering the full posterior distributions of individual parameters, the bias on dosage adjustment proposals was acceptable in 97% of cases with a median bias of 0.65%. These results confirmed the ability of posologyr to serve as a basis for the development of future Bayesian dose individualization tools.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献