Polymeric Micelles for the Enhanced Deposition of Hydrophobic Drugs into Ocular Tissues, without Plasma Exposure

Author:

Uchegbu Ijeoma F.ORCID,Breznikar JanORCID,Zaffalon Alessandra,Odunze Uche,Schätzlein Andreas G.

Abstract

Commercial topical ocular formulations for hydrophobic actives rely on the use of suspensions or oil in water emulsions and neither of these formulation modalities adequately promote drug penetration into ocular tissues. Using the ocular relevant hydrophobic drug, cyclosporine A (CsA), a non-irritant ocular penetration enhancer is showcased, which may be used for the formulation of hydrophobic actives. The activity of this penetration enhancer is demonstrated in a healthy rabbit model. The Molecular Envelope Technology (MET) polymer (N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan), a self-assembling, micelle-forming polymer, was used to formulate CsA into sterile filtered nanoparticulate eye drop formulations and the stability of the formulation tested. Healthy rabbits were dosed with a single dose of a MET–CsA (NM133) 0.05% formulation and ocular tissues analyzed. Optically clear NM133 formulations were prepared containing between 0.01–0.1% w/v CsA and 0.375–0.75% w/v MET polymer. NM133 0.01%, NM133 0.02% and NM133 0.05% were stable for 28 days when stored at refrigeration temperature (5–6 °C) and room temperature (16–23 °C), but there was evidence of evaporation of the formulation at 40 °C. There was no change in drug content when NM133 0.05% was stored for 387 days at 4 °C. On topical dosing to rabbits, corneal, conjunctival and scleral AUC0–24 levels were 25,780 ng.h g−1, 12,046 ng.h g−1 and 5879 ng.h g−1, respectively, with NM133 0.05%. Meanwhile, a similar dose of Restasis 0.05% yielded lower values of 4726 ng.h/g, 4813 ng.h/g and 1729 ng.h/g for the drug corneal, conjunctival and scleral levels, respectively. NM133 thus delivered up to five times more CsA to the ocular surface tissues when compared to Restasis. The MET polymer was non-irritant up to a concentration of 4% w/v. The MET polymer is a non-irritant ocular penetration enhancer that may be used to deliver hydrophobic drugs in optically clear topical ocular formulations.

Funder

Nanomerics Ltd

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3