Binary Polymeric Surfactant Mixtures for the Development of Novel Loteprednol Etabonate Nanomicellar Eyedrops

Author:

Tampucci Silvia12ORCID,Monti Daniela12ORCID,Burgalassi Susi12ORCID,Terreni Eleonora1ORCID,Paganini Valentina1ORCID,Di Gangi Mariacristina1,Chetoni Patrizia12ORCID

Affiliation:

1. Department of Pharmacy, University of Pisa, 56126 Pisa, Italy

2. Italian Inter-University Center for the Promotion of the 3Rs in Teaching and Research, University of Pisa, 56122 Pisa, Italy

Abstract

The treatment of several ocular inflammatory conditions affecting different areas of the ocular globe involves the administration of topical ophthalmic formulations containing corticosteroids. This research was aimed at evaluating the solubilising efficacy of 5.0% w/w of different binary mixtures of commercial amphiphilic polymeric surfactants with the purpose of obtaining nanomicellar solutions containing a high amount of loteprednol etabonate (LE). The selected LE-TPGS/HS nanomicelles, containing 0.253 mg/mL of the drug, had a small size (=13.57 nm) and uniform distribution (Polydispersity Index = 0.271), appeared completely transparent and perfectly filterable through 0.2 μm membrane filter, and remained stable up to 30 days at 4 °C. The critical micellar concentration (CMCTPGS/HS) was 0.0983 mM and the negative value of the interaction parameter between the polymeric-surfactant-building unit (βTPGS/HS = −0.1322) confirmed the ability of the polymeric surfactants to interact, favouring the dissolution of LE into nanomicelles. The disappearance of the endothermic peak of LE in the DSC analysis confirmed the interactions of LE with the polymeric surfactants. LE-TPGS/HS produced in vitro LE which sustained diffusion for 44 h (more than 40% of encapsulated LE). Furthermore, the lack of a significant cytotoxic effect on a sensitive corneal epithelial cell line makes it a candidate for further biological studies.

Funder

University of Pisa

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3