An Enhanced Flower Pollination Algorithm with Gaussian Perturbation for Node Location of a WSN

Author:

Zheng Jun1,Yuan Ting2,Xie Wenwu2,Yang Zhihe2,Yu Dan2

Affiliation:

1. College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China

2. School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China

Abstract

Localization is one of the essential problems in internet of things (IoT) and wireless sensor network (WSN) applications. However, most traditional range-free localization algorithms cannot fulfill the practical demand for high localization accuracy. Therefore, a localization algorithm based on an enhanced flower pollination algorithm (FPA) with Gaussian perturbation (EFPA-G) and the DV-Hop method is proposed.FPA is widely applied, but premature convergence still cannot be avoided. How to balance its global exploration and local exploitation capabilities still remains an outstanding problem. Therefore, the following improvement schemes are introduced. A search strategy based on Gaussian perturbation is proposed to solve the imbalance between the global exploration and local exploitation search capabilities. Meanwhile, to fully exploit the variability of population information, an enhanced strategy is proposed based on optimal individual and Lévy flight. Finally, in the experiments with 26 benchmark functions and WSN simulations, the former verifies that the proposed algorithm outperforms other state-of-the-art algorithms in terms of convergence and search capability. In the simulation experiment, the best value for the normalized mean squared error obtained by the most advanced algorithm, RACS, is 20.2650%, and the best value for the mean distance error is 5.07E+00. However, EFPA-G reached 19.5182% and 4.88E+00, respectively. It is superior to existing algorithms in terms of positioning, accuracy, and robustness.

Funder

Natural Science Foundation of Hunan Province

Hunan Province for Postgraduate

Program-Education Department of Zhejiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3