Effectiveness of Data Augmentation for Localization in WSNs Using Deep Learning for the Internet of Things

Author:

Esheh Jehan1,Affes Sofiene1ORCID

Affiliation:

1. EMT Centre (Energy, Materials and Telecommunications), INRS (Institut National de la Recherche Scientifique), Université du Québec, Montréal, QC H5A 1K6, Canada

Abstract

Wireless sensor networks (WSNs) have become widely popular and are extensively used for various sensor communication applications due to their flexibility and cost effectiveness, especially for applications where localization is a main challenge. Furthermore, the Dv-hop algorithm is a range-free localization algorithm commonly used in WSNs. Despite its simplicity and low hardware requirements, it does suffer from limitations in terms of localization accuracy. In this article, we develop an accurate Deep Learning (DL)-based range-free localization for WSN applications in the Internet of things (IoT). To improve the localization performance, we exploit a deep neural network (DNN) to correct the estimated distance between the unknown nodes (i.e., position-unaware) and the anchor nodes (i.e., position-aware) without burdening the IoT cost. DL needs large training data to yield accurate results, and the DNN is no stranger. The efficacy of machine learning, including DNNs, hinges on access to substantial training data for optimal performance. However, to address this challenge, we propose a solution through the implementation of a Data Augmentation Strategy (DAS). This strategy involves the strategic creation of multiple virtual anchors around the existing real anchors. Consequently, this process generates more training data and significantly increases data size. We prove that DAS can provide the DNNs with sufficient training data, and ultimately making it more feasible for WSNs and the IoT to fully benefit from low-cost DNN-aided localization. The simulation results indicate that the accuracy of the proposed (Dv-hop with DNN correction) surpasses that of Dv-hop.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference25 articles.

1. 6G Internet of things: A comprehensive survey;Nguyen;IEEE Internet Things J.,2022

2. Paul, A.K., and Sato, T. (2017). Localization in wireless sensor networks: A survey on algorithms, measurement techniques, applications, and challenges. J. Sens. Actuator Netw., 6.

3. RSSI-based indoor localization and identification for Zigbee wireless sensor networks in smart homes;Bianchi;IEEE Trans. Instrum. Meas.,2019

4. IoT assisted hierarchical computation strategic making (HCSM) and dynamic stochastic optimization technique (DSOT) for energy optimization in wireless sensor networks for smart city monitoring;Sundhari;Comput. Commun.,2020

5. Niculescu, D., and Nath, B. (April, January 30). Ad hoc positioning system (APS) using AOA. Proceedings of the IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428), San Francisco, CA, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3