A Lightweight Network for Real-Time Rain Streaks and Rain Accumulation Removal from Single Images Captured by AVs

Author:

Khatab EsraaORCID,Onsy AhmedORCID,Varley Martin,Abouelfarag Ahmed

Abstract

In autonomous driving, object detection is considered a base step to many subsequent processes. However, object detection is challenged by loss in visibility caused by rain. Rainfall occurs in two main forms, which are streaks and streaks accumulations. Each degradation type imposes different effect on the captured videos; therefore, they cannot be mitigated in the same way. We propose a lightweight network which mitigates both types of rain degradation in real-time, without negatively affecting the object-detection task. The proposed network consists of two different modules which are used progressively. The first one is a progressive ResNet for rain streaks removal, while the second one is a transmission-guided lightweight network for rain streak accumulation removal. The network has been tested on synthetic and real rainy datasets and has been compared with state-of-the-art (SOTA) networks. Additionally, time performance evaluation has been performed to ensure real-time performance. Finally, the effect of the developed deraining network has been tested on YOLO object-detection network. The proposed network exceeded SOTA by 1.12 dB in PSNR on the average result of multiple synthetic datasets with 2.29× speedup. Finally, it can be observed that the inclusion of different lightweight stages works favorably for real-time applications and could be updated to mitigate different degradation factors such as snow and sun blare.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference70 articles.

1. (2022, June 30). Road Traffic Injuries. Available online: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries.

2. Automated driving recognition technologies for adverse weather conditions;Yoneda;IATSS Res.,2019

3. SAE (2018). Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, SAE International.

4. Object detection with deep learning: A review;Zhao;IEEE Trans. Neural Netw. Learn. Syst.,2019

5. Vulnerable objects detection for autonomous driving: A review;Khatab;Integration,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3