Repair of Gear by Laser Cladding Ni60 Alloy Powder: Process, Microstructure and Mechanical Performance

Author:

Guan Chuang,Yu Tianbiao,Zhao Yu,Chen Liaoyuan,Chen Ying

Abstract

As the main mechanical transmission parts, the gears are usually exposed to wear, corrosion, and fatigue; their failure in a poor working environment may cause a huge economic loss and waste of resources. Laser cladding (LC) has been proven to quickly repair parts at good metallurgical bonding performance and has flexible scanning strategies and a wide material selection. Therefore, LC technology can be considered an ideal approach to repairing damaged gear. However, the repair of damaged teeth by LC has not been systematically reported. In this paper, a series of progressive works have been carried out to systematically investigate the repair process of broken gears by LC. Firstly, process parameters, overlapping ratio, and Z-increment for Ni60 powder on 20CrMnTi were optimized. Secondly, the effects of deposition strategies on morphologies of single-layer and multi-layer multi-tracks were carefully analyzed. Then, the gear repair was successfully realized based on obtained optimized parameters. Finally, the phase composition, microstructure, hardness, and wear properties of the repaired gear tooth were analyzed by XRD, SEM, microhardness tester, and friction and wear tester. The results show that the remanufactured tooth can recover its appearance before breakage. The repaired zone is mainly composed of γ-Ni, Cr7C3, Cr23C6, and CrB phases. The micro-hardness and wear volume loss of the repaired zone is 60.63 ± 1.23HRC and 1674.983 μm2, which are consistent with those of the other teeth. This study is expected to expand the application of LC technology and provide guidance to engineers in the repair of damaged parts.

Funder

the Fundamental Research Funds for the Central Universities

111Projiect

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spur gear teeth reconstruction via direct laser deposition;Forschung im Ingenieurwesen;2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3