Hydroxyapatite Growth on Activated Carbon Surface for Methylene Blue Adsorption: Effect of Oxidation Time and CaSiO3 Addition on Hydrothermal Incubation

Author:

Moreno-Santos Anastasio,Rios-Hurtado Jorge CarlosORCID,Flores-Villaseñor Sergio Enrique,Esmeralda-Gomez Alma GracielaORCID,Guevara-Chavez Juanita Yazmin,Lara-Castillo Fatima Pamela,Escalante-Ibarra Griselda Berenice

Abstract

Many adsorbent materials are now commercially available; however, studies have focused on modifying them to enhance their properties. In this study, an activated carbon (AC) and hydroxyapatite (HAp) composite was synthesized by the immersion of ACs in a simulated body fluid solution, varying the AC oxidation degree along with the addition of CaSiO3. The resulting composites were characterized by ash %, X-ray fluorescence (XRF), Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and point of zero charge (PZC). The characterization results indicated that the addition of CaSiO3 and the oxygenated functional groups in the AC surface are key factors for HAp growth. The composites were tested on methylene blue (MB) adsorption as a potential application for the synthesized materials. Adsorption isotherms were modeled with Langmuir and Freundlich isotherms, and the composites were fitted to a Langmuir model with the highest qmax value of 9.82. The kinetic results indicated that for the pseudo-second-order model, the composites fitted, with a contact time of 180 min to remove a 95.61% average of the MB. The results indicate that composite materials can be an efficient adsorbent for the removal of MB from aqueous solutions at low concentrations since the material with the highest amount of HAp growth removed 99.8% of the MB in 180 min.

Funder

CONACyT

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3