A Two-Stage Rolling Bearing Weak Fault Feature Extraction Method Combining Adaptive Morphological Filter with Frequency Band Selection Strategy

Author:

Li Jun1,Wang Hongchao2,Li Simin3,Chen Liang3,Dang Qiqian3

Affiliation:

1. School of Mechatronic Engineering, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China

2. Mechanical and Electrical Engineering Institute, Zhengzhou University of Light Industry, 5 Dongfeng Road, Zhengzhou 450002, China

3. Zhengzhou Research Institute of Mechanical Engineering Co., Ltd., 149 Science Avenue, Zhengzhou 450001, China

Abstract

To extract the weak fault features hidden in strong background interference in the event of the early failure of rolling bearings, a two-stage based method is proposed. The broadband noise elimination ability of an adaptive morphological filter (AMF) and the superior capability of a frequency band selection (FBS) strategy for fault transient location identification are comprehensively utilized by the proposed method. Firstly, the AMF with a simple theory and high calculation efficiency is used as a preprocessing program to enhance the fault transient features. Then, the proposed FBS strategy based on the sparsity index (SI) is utilized to further handle the filtered signal processed by the AMF. Finally, the constructed optimum bandpass filter based on the analysis result of the FBS is used to further filter the handled signal processed by AMF and envelope spectral analysis is applied on the last filtered signal to realize the ideal fault feature extraction effect. Compared with the other traditional FBS methods based on kurtosis or the other index, the proposed FBS strategy based on SI has strong robustness to noise. One experimental signal and one engineering vibration signal are used, respectively, to verify the feasibility of the proposed method.

Funder

Key Science and Technology Research Project of the Henan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3