Author:
Zheng Xing,Yao Yu,Hu Zhenhong,Yu Ziying,Hu Siyuan
Abstract
The deformation and vibration of wind turbine blades in turbulent environment cannot be ignored; therefore, in order to better ensure the safety of wind turbine blades, the study of air-elastic response of wind turbine blades under turbulent wind is indispensable. In this paper, the NREL 5MW wind turbine blades are modeled with accurate 3D lay-up design, firstly, based on the joint simulation of commercial software STAR CCM+ and ABAQUS, the two-way fluid-solid coupling technology, the wind turbine under uniform wind condition is simulated, and the results from thrust, torque, structural deformation and force perspective and FAST are compared with good accuracy and consistency below the rated wind speed. Secondly, the aerodynamic performance, flow field distribution and structural response of turbulent winds with different turbulence strengths at 10 m/s were studied. The results show that the turbulence intensity has a greater impact on the amplitude of the wind turbine blade, and the stress distribution of the blade is more concentrated, which in turns affects the stability and safety of the wind turbine blade and is not conducive to the normal operation of the wind turbine.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Natural Science Foundation of Heilongjiang Province in China
Open Fund of Zhejiang Provincial Key Laboratory of Wind Power Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献