Effect of Turbulence Intensity on Aerodynamic Loads of Floating Wind Turbine under Wind–Wave Coupling Effect

Author:

Tian Wenxin12,Shi Qiang3,Zhang Lidong3,Ren Hehe1,Yu Hongfa1,Chen Yibing3,Feng Zhengcong3,Bai Yuan2

Affiliation:

1. Department of Airport and Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. State Key Laboratory of Low-Carbon Smart Coal-Fired Power Generation and Ultra-Clean Emission, China Energy Science and Technology Research Institute Co., Ltd., Nanjing 210023, China

3. School of Energy and Power Engineering, Northeast Electric Power University, 169 Changchun Road, Chuanying District, Jilin 132012, China

Abstract

This study first employs TurbSim and OpenFAST (Fatigue, Aerodynamics, Structures, Turbulence) programs for secondary development to comprehensively model the NREL-5MW semi-submersible wind turbine and OC4-DeepC wind floating platform with wind–wave interaction. Next, we investigate the dynamic response of floating wind turbines under the complex coupling of turbulent winds and irregular waves. Turbulent wind fields were simulated using the IEC Kaimal model with turbulence intensities of 5% and 20%. Additionally, two irregular waves were simulated with the Pierson–Moskowitz (P–M) spectrum. The results indicate that in turbulent wind conditions, the aerodynamic power of the wind turbine and the root bending moments of the blades are significantly influenced by turbulence, while the impact of waves is minimal. The coupled motion response of the floating platform demonstrates that turbulence intensity has the greatest impact on the platform’s heave and pitch motions, underscoring the importance of turbulence in platform stability. This study provides essential insights for designing and optimizing floating wind turbines in complex wind–wave coupling offshore environments.

Funder

Key R&D projects of Jilin Provincial Science

Study on nonlinear wind robustness of structural systems for large-scale wind power generation

National Natural Science Foundation of China

National key r&d program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3