Abstract
Kingdom of Among the G20 countries, Saudi Arabia (KSA) is facing alarming traffic safety issues compared to other G-20 countries. Mitigating the burden of traffic accidents has been identified as a primary focus as part of vision 20230 goals. Driver distraction is the primary cause of increased severity traffic accidents in KSA. In this study, three different machine learning-based severity prediction models were developed and implemented for accident data from the Qassim Province, KSA. Traffic accident data for January 2017 to December 2019 assessment period were obtained from the Ministry of Transport and Logistics Services. Three classifiers, two of which are ensemble machine learning methods, namely random forest, XGBoost, and logistic regression, were used for crash injury severity classification. A resampling technique was used to deal with the problem of bias due to data imbalance issue. SHapley Additive exPlanations (SHAP) analysis interpreted and ranked the factors contributing to crash injury. Two forms of modeling were adopted: multi and binary classification. Among the three models, XGBoost achieved the highest classification accuracy (71%), precision (70%), recall (71%), F1-scores (70%), and area curve (AUC) (0.87) of receiver operating characteristic (ROC) curve when used for multi-category classifications. While adopting the target as a binary classification, XGBoost again outperformed the other classifiers with an accuracy of 94% and an AUC of 0.98. The SHAP results from both global and local interpretations illustrated that the accidents classified under property damage only were primarily categorized by their consequences and the number of vehicles involved. The type of road and lighting conditions were among the other influential factors affecting injury s severity outcome. The death class was classified with respect to temporal parameters, including month and day of the week, as well as road type. Assessing the factors associated with the severe injuries caused by road traffic accidents will assist policymakers in developing safety mitigation strategies in the Qassim Region and other regions of Saudi Arabia.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference75 articles.
1. International Transport Forum (ITF) (2021). Road Safety Annual Report 2021: The Impact of COVID-19, ITF.
2. World Health Organization (WHO) (2018). Global Status Report on Road Safety, WHO.
3. A framework for accident reduction and risk identification and assessment in Saudi Arabia;Kumar;World J. Sci. Technol. Sustain. Dev.,2014
4. Peer reviewed: Burden of disease, injuries, and risk factors in the Kingdom of Saudi Arabia, 1990–2010;Memish;Prev. Chronic Dis.,2014
5. Epidemiology of road traffic injuries in Qassim region, Saudi Arabia: Consistency of police and health data;Barrimah;Int. J. Health Sci.,2012
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献