Improving traffic accident severity prediction using MobileNet transfer learning model and SHAP XAI technique

Author:

Aboulola Omar Ibrahim

Abstract

Traffic accidents remain a leading cause of fatalities, injuries, and significant disruptions on highways. Comprehending the contributing factors to these occurrences is paramount in enhancing safety on road networks. Recent studies have demonstrated the utility of predictive modeling in gaining insights into the factors that precipitate accidents. However, there has been a dearth of focus on explaining the inner workings of complex machine learning and deep learning models and the manner in which various features influence accident prediction models. As a result, there is a risk that these models may be seen as black boxes, and their findings may not be fully trusted by stakeholders. The main objective of this study is to create predictive models using various transfer learning techniques and to provide insights into the most impactful factors using Shapley values. To predict the severity of injuries in accidents, Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Residual Networks (ResNet), EfficientNetB4, InceptionV3, Extreme Inception (Xception), and MobileNet are employed. Among the models, the MobileNet showed the highest results with 98.17% accuracy. Additionally, by understanding how different features affect accident prediction models, researchers can gain a deeper understanding of the factors that contribute to accidents and develop more effective interventions to prevent them.

Publisher

Public Library of Science (PLoS)

Reference57 articles.

1. Road traffic accident: Human security perspective;M. Gebru;International Journal Of Peace And Development Studies,2017

2. Identification of factors affecting road traffic injuries incidence and severity in Southern Thailand based on accident investigation reports;N. Klinjun;Sustainability,2021

3. Understanding traffic bottlenecks of long freeway tunnels based on a novel location-dependent lighting-related car-following model;S. Yu;Tunnelling And Underground Space Technology,2023

4. World Health Organization Road traffic injuries. (https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries,2023), Accessed: January 8, 2024

5. Organization, W. & Others Road safety. WHO. (2020)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3