Vibration Characteristics and Experimental Research of an Improved Bistable Piezoelectric Energy Harvester

Author:

Zhang XuhuiORCID,Tian HaoORCID,Pan Jianan,Chen Xiaoyu,Huang Mengyao,Xu HengtaoORCID,Zhu FulinORCID,Guo YanORCID

Abstract

Bistable piezoelectric energy harvester (BPEH) can remove mechanical energy waste, which is expected to realize the self-power supply of wireless sensors. To further improve the energy harvesting efficiency, we designed an improved bistable piezoelectric energy harvester (IBPEH). The restoring force model of the composing beam is acquired based on fitting experimental data, and the nonlinear magnetic model is obtained by using the magnetic dipole method. The electromechanical coupling dynamics model of the system is established based on Newton’s second law and Kirchhoff’s law. Based on the control variable method, the influences of excitation frequency and excitation amplitude on the vibration characteristics of IBPEH and BPEH are compared in simulation analysis. Moreover, the correctness of the theoretical analyses is verified by experiments. The results show that variations in the number of magnets and appropriate adjustments in their positions can broaden the operating frequency bandwidth of the bistable piezoelectric energy harvester, and realize large-amplitude periodic motion at lower excitation amplitudes. IBPEH can yield a higher voltage than BPEH under the same excitation conditions. This paper provides a theoretical basis for optimizing the potential well and further improving the electric energy harvest efficiency of the bistable piezoelectric energy harvester device.

Funder

National Natural Science Foundation of China

Shaanxi Coal Joint Fund Project

National Green Manufacturing System Integration Project

Shaanxi Innovative Talent Plan Project

Key R&D project in Shaanxi

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3