Fast Vibration Reduction Optimization Approach for Complex Thin-Walled Shells Accelerated by Global Proper Orthogonal Decomposition Reduced-Order Model

Author:

Shi Yongxin,Ke Zhao,Sun Wei,Zhang Peng,Yang Qiang,Tian KuoORCID

Abstract

A fast vibration reduction optimization approach accelerated by the global proper orthogonal decomposition (POD) reduced-order model (ROM) is proposed, aiming at increasing the efficiency of frequency response analysis and vibration reduction optimization of complex thin-walled shells. At the offline stage, the global POD ROM is adaptively updated using the sample configurations generated by the CV (cross validation)–Voronoi sequence sampling method. In comparison to the traditional direct sampling method, the proposed approach achieves higher global prediction accuracy. At the online stage, the fast vibration reduction optimization is performed by combining the surrogate-based efficient global optimization (EGO) method and the proposed ROM. Two representative examples are carried out to verify the effectiveness and efficiency of the proposed approach, including examples of an aerospace S-shaped curved stiffened shell and a Payload Attach Fitting. The results indicate that the proposed approach achieves high prediction accuracy and efficiency through the verification by FOM and obtains better optimization ability over the direct optimization method based on FOM.

Funder

National Key Research and Development Program project of China

National Natural Science Foundation of China

Basic research funds for the central universities of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3