Parallel Load-Bearing and Damping System Design and Test for Satellite Vibration Suppression

Author:

Chen Shenyan,Yang Zihan,Ying Minxiao,Zheng YanwuORCID,Liu YanjieORCID,Pan Zhongwen

Abstract

The traditional series-type satellite vibration suppression scheme significantly decreases satellite frequency, which leads to difficulty in controlling the amplitude. In the present work, a new parallel viscous damping scheme is adopted on the Payload Adaptor Fitting (PAF), which aims to integrate a load-bearing design and vibration reduction. The vibration amplitude and weight are the most important design requirements of the damping system. The Finite Element (FE) model of PAF was established. Through a series of analyses, the appropriate number and coefficient of dampers were determined. The damping force was calculated according to the damping coefficient and the relative velocity between the two ends of the damper. Based on the damping force and the installation dimensions, the damping rod was designed. The force–velocity test was carried out on the damping rod prototype, which showed its performance satisfies the requirements. With the topology optimization and sizing optimization technology, the light-weight supports were designed and manufactured. One damping rod and two supports were assembled as one set of dampers. Eight sets of dampers were installed on the PAF. Vibration tests were conducted on the damping state PAF. The results showed that the proposed system is effective at suppressing vibration and maintaining stiffness simultaneously.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference23 articles.

1. Review and Assessment of Spacecraft Mechanical Environment Analysis and Specification Determination;Ma;J. Astronaut.,2012

2. Recent advances in micro-vibration isolation

3. Active vibration suppression in flexible spacecraft with optical measurement

4. Analytical Methods and Test Techniques of Satellite and Launch Vehicle Mechanical Environment;Ma,2017

5. Progress of POGO suppression technology of launch vehicles at home and abroad

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3