Biomechanical Rationale for a Novel Implant Design Reducing Stress on Buccal Bone

Author:

Schulz Annika,Klär Virgilia,Grobecker-Karl Tanja,Karl MatthiasORCID

Abstract

Modern implant designs should allow for adequate primary stability but limit mechanical stress on buccal bone in order to prevent initial marginal bone loss. A dental implant characterized by a shift in core diameter and thread geometry was evaluated. Polyurethane foam was used as bone surrogate material and implant placement was performed measuring insertion torque and strain development on buccal bone using strain gauges as well as primary stability by using damping capacity assessments. An existing tapered bone-level implant was used as a control while the novel experimental implant described above (n = 10) was used in the test group. Statistical analysis was based on t-tests (α = 0.05). Both the maximum insertion torque (p = 0.0016) and maximum strain development in buccal bone (p = 0.1069) were greater in control implants as compared to the novel implant design. Moreover, in the control group, these were reached at a significantly later timepoint of the insertion process, i.e., when the implant was almost fully seated (maximum insertion torque p = 0.0001, maximum strain development p < 0.00001). The final insertion torque (p < 0.00001) and final strain development (p = 0.0137) were significantly lower in the novel implant design while the primary stability of both implant types did not differ significantly (p = 0.219). The novel implant design allowed for a greater undersizing of osteotomies while not mechanically overstressing buccal bone. Comparable primary stability was obtained from trabecular bone instead of compressing cortical bone as occurs in conventional, existing tapered implant designs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3